

MATLAB®
Programming
for Engineers

MATLAB®
Programming
for Engineers
Sixth Edition

Stephen J. Chapman
BAE Systems Australia

A u s t r a l i a • B r a z i l • M e x i c o • S i n g a p o r e • S p a i n • U n i t e d K i n g d o m • U n i t e d S t a t e s

© 2020, 2016, 2008 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced or distributed in any form
or by any means, except as permitted by U.S. copyright law,
without the prior written permission of the copyright owner.

MATLAB Programming for Engineers,
Sixth Edition
Stephen J. Chapman

Product Director, Global Engineering:
Timothy L. Anderson

Senior Product Assistant: Alexander
Sham

Content Developer: MariCarmen
Constable

Associate Marketing Manager: Tori
Sitcawich

Content Manager: Marianne Groth

IP Analyst: Nancy Dillon

IP Project Manager: Jillian Shafer

Production Service: RPK Editorial
Services, Inc.

Compositor: MPS Limited

Senior Designer: Diana Graham

Cover Image: iStockPhoto.com/
Henrik5000

Manufacturing Planner: Doug Wilke

Printed in the United States of America
Print Number: 01   Print Year: 2018

For product information and technology assistance, contact us at

Cengage Customer & Sales Support, 1-800-354-9706
or support.cengage.com.

For permission to use material from this text or product,
submit all

requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2018965078

Student Edition:
ISBN: 978-0-357-03039-4

Loose-leaf Edition:
ISBN: 978-0-357-03051-6

Cengage
20 Channel Center Street
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and
sales in more than 125 countries around the world. Find your
local representative at www.cengage.com.

Cengage products are represented in Canada by Nelson
Education, Ltd.

To learn more about Cengage platforms and services, register
or access your online learning solution, or purchase materials
for your course, visit www.cengage.com.

MATLAB is a registered trademark of The MathWorks, Inc.,
1 Apple Hill Drive, Natick, MA 01760-2098

This book is dedicated with love to my youngest daughter Devorah,
who just finished high school. The last one!

vii

Preface

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB language and provides an
extensive library of predefined functions to make technical programming tasks
easier and more efficient. This extremely wide variety of functions makes it much
easier to solve technical problems in MATLAB than in other languages such as
Fortran or C. This book introduces the MATLAB language as it is implemented in
version R2018a and shows how to use it to solve typical technical problems.

This book teaches MATLAB as a technical programming language, showing
students how to write clean, efficient, and documented programs. It makes no pre-
tense at being a complete description of all of MATLAB’s hundreds of functions.
Instead, it teaches the student how to use MATLAB as a computer language and
how to locate any desired function with MATLAB’s extensive on-line help facilities.

The first eight chapters of the text are designed to serve as the text for an
“Introduction to Programming/Problem Solving” course for freshman engineer-
ing students. This material should fit comfortably into a 9-week, 3-hour-per-week
course. The remaining chapters cover advanced topics such as I/O, object-oriented
programming, and graphical user interfaces (GUIs). These chapters may be covered
in a longer course or used as a reference by engineering students or practicing engi-
neers who use MATLAB as a part of their coursework or employment.

Changes in the Sixth Edition

The sixth edition of this book is specifically devoted to MATLAB R2018a. In
the four years since the last release, there have been many changes in MATLAB.

vii

viii | Preface

The most significant of these changes include the introduction of the App
Designer, which includes a whole new paradigm for creating MATLAB apps; a
new family of plotting functions; and strings. There have also been many smaller
improvements throughout the program. The book has been revised to reflect
these changes.

The major changes in this edition of the book include:

■■ An increase in the number of MATLAB applications featured in the chapters,
with more end-of-chapter exercises using them.

■■ More extensive coverage of plots in Chapter 3 and Chapter 8. The discussion
now includes most of the currently recommended plot types in MATLAB.
Older deprecated plot types have been dropped from coverage as the new ones
have been added.

■■ Coverage of the new string data type, along with changes in the support for
character arrays.

■■ Coverage of the time data types: dateTime, duration, and
calendarDuration.

■■ Coverage of table arrays.
■■ A completely rewritten Chapter 14 featuring the new App Designer and class-
based GUIs.

■■ An extra on-line Chapter 15 featuring the older GUIDE-based GUIs; this
chapter can be downloaded from the book’s website.

The Advantages of MATLAB for Technical Programming

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are:

1.	 Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to execute
large pre-written programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for
educational use and for the rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line documenta-
tion and manuals, a workspace browser, and extensive demos.

2.	 Platform Independence
MATLAB is supported on many different computer systems, providing a
large measure of platform independence. At the time of this writing, the
language is supported on Windows 7/8/10, Linux, and the Mac. Programs
written on any platform will run on all of the other platforms, and data files
written on any platform may be read transparently on any other platform.

Preface | ix

As a result, programs written in MATLAB can migrate to new platforms
when the needs of the user change.

3.	 Predefined Functions
MATLAB comes complete with an extensive library of predefined functions
that provide tested and prepackaged solutions to many basic technical tasks.
For example, suppose that you are writing a program that must calculate the
statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, and so forth. These
and hundreds of other functions are built right into the MATLAB language,
making your job much easier.

In addition to the large library of functions built into the basic
MATLAB language, there are many special-purpose toolboxes available to
help solve complex problems in specific areas. For example, a user can buy
standard toolboxes to solve problems in Signal Processing, Control Sys-
tems, Communications, Image Processing, and Neural Networks, among
many others.

4.	 Device-Independent Plotting
Unlike other computer languages, MATLAB has many integral plotting and
imaging commands. The plots and images can be displayed on any graphi-
cal output device supported by the computer on which MATLAB is running.
This capability makes MATLAB an outstanding tool for visualizing techni-
cal data.

5.	 Graphical User Interface
MATLAB includes tools that allow a programmer to interactively construct a
GUI for his or her program. With this capability, the programmer can design
sophisticated data analysis programs that can be operated by relatively inex-
perienced users.

Features of  This Book

Many features of this book are designed to emphasize the proper way to write reli-
able MATLAB programs. These features should serve a student well as he or she
is first learning MATLAB and should also be useful to the practitioner on the job.
These features include:

1.	 Emphasis on Top-Down Design Methodology
The book introduces a top-down design methodology in Chapter 4 and
then uses it consistently throughout the rest of the book. This methodology
encourages a student to think about the proper design of a program before
beginning to code. It emphasizes the importance of clearly defining the
problem to be solved and the required inputs and outputs before any other
work is begun. Once the problem is properly defined, the methodology
teaches the student to employ stepwise refinement to break the task down

x | Preface

into successively smaller sub-tasks, and to implement the sub-tasks as sepa-
rate subroutines or functions. Finally, it teaches the importance of testing
at all stages of the process, both unit testing of the component routines and
exhaustive testing of the final product.

The formal design process taught by the book may be summarized as
follows:

1.	Clearly state the problem that you are trying to solve.
2.	Define the inputs required by the program and the outputs to be pro-

duced by the program.
3.	Describe the algorithm that you intend to implement in the program.

This step involves top-down design and stepwise decomposition,
using pseudocode or flow charts.

4.	Turn the algorithm into MATLAB statements.
5.	Test the MATLAB program. This step includes unit testing of specific

functions as well as exhaustive testing of the final program with many
different data sets.

2.	 Emphasis on Functions
The book emphasizes the use of functions to logically decompose tasks
into smaller subtasks. It teaches the advantages of functions for data hid-
ing. It also emphasizes the importance of unit testing functions before
they are combined into the final program. In addition, the book teaches
about the common mistakes made with functions and how to avoid them.

3.	 Emphasis on MATLAB Tools
The book teaches the proper use of MATLAB’s built-in tools to make
programming and debugging easier. The tools covered include the Editor/
Debugger, Workspace Browser, Help Browser, and GUI design tools.

4.	 Good Programming Practice Boxes
These boxes highlight good programming practices when they are intro-
duced for the convenience of the student. In addition, the good programming
practices introduced in a chapter are summarized at the end of the chapter.
An example Good Programming Practice Box is as follows:

Good Programming Practice

Always indent the body of an if construct by two or more spaces to improve the
readability of the code.

5.	 Programming Pitfalls Boxes
These boxes highlight common errors so that they can be avoided. An
example Programming Pitfalls Box is as follows:

Preface | xi

6.	 Emphasis on Data Structures
Chapter 10 contains a detailed discussion of MATLAB data structures,
including sparse arrays, cell arrays, and structure arrays. The proper use
of these data structures is illustrated in the chapters on handle graphics
(Chapter 13) and graphical user interfaces (Chapter 14).

7.	 Emphasis on Object-Oriented MATLAB
Chapter 12 includes an introduction to object-oriented programming (OOP)
and describes the MATLAB implementation of OOP in detail. This informa-
tion is then applied in the discussion of App Designer GUIs.

Pedagogical Features

The first eight chapters of this book are specifically designed to be used in a fresh-
man “Introduction to Program/Problem Solving” course. It should be possible to
cover this material comfortably in a 9-week, 3-hour-per-week course. If there is
insufficient time to cover all of the material in a particular Engineering program,
Chapter 8 may be omitted, and the remaining material will still teach the fundamen-
tals of programming and using MATLAB to solve problems. This feature should
appeal to harassed engineering educators trying to cram ever more material into a
finite curriculum.

The remaining chapters cover advanced material that will be useful to the
engineer and engineering students as they progress in their careers. This material
includes advanced I/O, object-oriented programming, and the design of GUIs for
programs.

The book includes several features designed to aid student comprehension. A
total of 20 quizzes appear scattered throughout the chapters, with answers to all
questions included in Appendix B. These quizzes can serve as a useful self-test of
comprehension. In addition, there are approximately 230 end-of-chapter exercises.
Answers to all exercises are included in the Instructor’s Solutions Manual. Good
programming practices are highlighted in all chapters with special Good Program-
ming Practice boxes, and common errors are highlighted in Programming Pitfalls
boxes. End-of-chapter materials include Summaries of Good Programming Practice
and Summaries of MATLAB Commands and Functions.

The book is accompanied by an Instructor’s Solutions Manual, which contains
the solutions to all end-of-chapter exercises. The source code for all examples in

Programming Pitfalls

Make sure that your variable names are unique in the first 31 characters. Otherwise,
MATLAB will not be able to tell the difference between them.

xii | Preface

the book is available from the book’s website at https://login.cengage.com, and the
source code for all solutions in the Instructor’s Manual is available separately to
instructors.

A Final Note to the User

No matter how hard I try to proofread a document like this book, it is inevitable that
some typographical errors will slip through and appear in print. If you should spot
any such errors, please drop me a note via the publisher, and I will do my best to
get these errors eliminated from subsequent printings and editions. Thank you very
much for your help in this matter.

I will maintain a complete list of errata and corrections at the book’s website,
which is available through https://login.cengage.com. Please check that site for any
updates and/or corrections.

Acknowledgments

I would like to thank all my friends at Cengage Learning for the support they have
given me in getting this book to market.

In addition, I would like to thank my wife Rosa, and our children Avi, David,
Rachel, Aaron, Sarah, Naomi, Shira, and Devorah for their help and encouragement.

Stephen J. Chapman
Melbourne, Australia

xiii

Digital Resources

New Digital Solution for Your Engineering Classroom

WebAssign is a powerful digital solution designed by educators to enrich the engi-
neering teaching and learning experience. With a robust computational engine at
its core, WebAssign provides extensive content, instant assessment, and superior
support.

WebAssign’s powerful question editor allows engineering instructors to cre-
ate their own questions or modify existing questions. Each question can use any
combination of text, mathematical equations and formulas, sound, pictures, video,
and interactive HTML elements. Numbers, words, phrases, graphics, and sound or
video files can be randomized so that each student receives a different version of
the same question.

In addition to common question types such as multiple choice, fill-in-
the-blank, essay, and numerical, you can also incorporate robust answer entry
palettes (mathPad, chemPad, calcPad, physPad, pencilPad, Graphing Tool) to
input and grade symbolic expressions, equations, matrices, and chemical struc-
tures using powerful computer algebra systems. You can even use Camtasia to
embed “clicker” questions that are automatically scored and recorded in the
GradeBook.

xiv | Digital Resources

WebAssign Offers Engineering Instructors the Following

■■ The ability to create and edit algorithmic and numerical exercises.
■■ The opportunity to generate randomized iterations of algorithmic and numeri-
cal exercises. When instructors assign numerical WebAssign homework exer-
cises (engineering math exercises), the WebAssign program offers them the
ability to generate and assign their students differing versions of the same
engineering math exercise. The computational engine extends beyond and
provides the luxury of solving for correct solutions/answers.

■■ The ability to create and customize numerical questions, allowing students to
enter units, use a specific number of significant digits, use a specific number of
decimal places, respond with a computed answer, or answer within a different
tolerance value than the default.

Visit https://www.webassign.com/instructors/features/ to learn more. To create an account,
instructors can go directly to the signup page at http://www.webassign.net/signup.html.

MindTap Reader

Available via WebAssign and our digital subscription service, Cengage Unlimited,
MindTap Reader is Cengage’s next-generation eBook for engineering students.

The MindTap Reader provides more than just text learning for the student. It
offers a variety of tools to help our future engineers learn chapter concepts in a way
that resonates with their workflow and learning styles.

■■ Personalize their experience

Within the MindTap Reader, students can highlight key concepts, add notes, and
bookmark pages. These are collected in My Notes, ensuring they will have their own
study guide when it comes time to study for exams.

Digital Resources | xv

■■ Flexibility at their fingertips

With access to Merriam-Webster’s Dictionary and the book’s internal glossary,
students can personalize their study experience by creating and collating their own
custom flashcards. The ReadSpeaker feature reads text aloud to students, so they can
learn on the go—wherever they are.

■■ Review concepts at point of use

Within WebAssign, a “Read It” button at the bottom of each question links students
to corresponding sections of the textbook, enabling access to the MindTap Reader
at the precise moment of learning. A “Watch It” button causes a short video to play.
These videos allow students to better understand and review the problem they need
to complete, enabling support at the precise moment of learning.

The MindTap Mobile App

Available on iOS and Android smartphones, the MindTap Mobile App provides
convenience. Students can access their entire textbook anyplace and anytime. They
can take notes, highlight important passages, and have their text read aloud whether
they are on-line or off.

To download the mobile app, visit https://www.cengage.com/mindtap
/mobileapp.

All-You-Can-Learn Access with Cengage Unlimited

Cengage Unlimited is the first-of-its-kind digital subscription that gives students
total and on-demand access to all the digital learning platforms, eBooks, on-line
homework, and study tools Cengage has to offer—in one place, for one price. With
Cengage Unlimited, students get access to their WebAssign courseware, as well as
content in other Cengage platforms and course areas from day one. That’s 70 disci-
plines and 675 courses worth of material, including engineering.

With Cengage Unlimited, students get unlimited access to a library of more than
22,000 products. To learn more, visit https://www.cengage.com/unlimited.

xvi | Digital Resources

xvii

Contents

xvii

Chapter 1	 Introduction to MATLAB	 1

1.1	 The Advantages of MATLAB 2
1.2	 Disadvantages of MATLAB 3
1.3	 The MATLAB Environment 4

1.3.1 The MATLAB Desktop 4
1.3.2 The Command Window 6
1.3.3 The Toolstrip 7
1.3.4 The Command History Window 8
1.3.5 The Document Window 8
1.3.6 Figure Windows 11
1.3.7 Docking and Undocking Windows 12
1.3.8 The MATLAB Workspace 12
1.3.9 The Workspace Browser 14
1.3.10 The Current Folder Browser 14
1.3.11 Getting Help 15
1.3.12 A Few Important Commands 18
1.3.13 The MATLAB Search Path 19

1.4	 Using MATLAB as a Calculator 21
1.5	 MATLAB Script Files 23

1.5.1 Setting Up a Problem to Solve 24
1.5.2 Creating a Simple MATLAB Script File 24

1.6	 Summary 28
1.6.1 MATLAB Summary 28

1.7	 Exercises 29

Chapter 2	 MATLAB Basics	 33

2.1	 Variables and Arrays 33

xviii | Contents

2.2	 Creating and Initializing Variables in MATLAB 37
2.2.1 Initializing Variables in Assignment Statements 37
2.2.2 Initializing with Shortcut Expressions 40
2.2.3 Initializing with Built-In Functions 41
2.2.4 Initializing Variables with Keyboard Input 41

2.3	 Multidimensional Arrays 43
2.3.1 Storing Multidimensional Arrays in Memory 45
2.3.2 �Accessing Multidimensional Arrays with One

Dimension 46
2.4	 Subarrays 46

2.4.1 The end Function 47
2.4.2 �Using Subarrays on the Left-Hand Side of an Assignment

Statement 47
2.4.3 Assigning a Scalar to a Subarray 49

2.5	 Special Values 49
2.6	 Displaying Output Data 51

2.6.1 Changing the Default Format 52
2.6.2 The disp Function 53
2.6.3 Formatted Output with the fprintf Function 54

2.7	 Data Files 55
2.8	 Scalar and Array Operations 58

2.8.1 Scalar Operations 58
2.8.2 Array and Matrix Operations 58

2.9	 Hierarchy of Operations 62
2.10	Built-in MATLAB Functions 65

2.10.1 Optional Results 65
2.10.2 Using MATLAB Functions with Array Inputs 65
2.10.3 Common MATLAB Functions 66

2.11	Introduction to Plotting 67
2.11.1 Using Simple xy Plots 68
2.11.2 Printing a Plot 69
2.11.3 Multiple Plots 70
2.11.4 Line Color, Line Style, Marker Style, and Legends 71

2.12	Examples 75
2.13	MATLAB Applications: Vector Mathematics 82

2.13.1 Vector Addition and Subtraction 84
2.13.2 Vector Multiplication 85

2.14	�MATLAB Applications: Matrix Operations
and Simultaneous Equations 90
2.14.1 The Matrix Inverse 91

2.15	Debugging MATLAB Programs 92
2.16	Summary 94

2.16.1 Summary of Good Programming Practice 95
2.16.2 MATLAB Summary 96

2.17	Exercises 99

Contents | xix

Chapter 3	 Two-Dimensional Plots	 111

3.1	 Additional Plotting Features for Two-Dimensional Plots 111
3.1.1 Logarithmic Scales 111
3.1.2 Controlling x- and y-axis Plotting Limits 116
3.1.3 Plotting Multiple Plots on the Same Axes 117
3.1.4 Creating Multiple Figures 117
3.1.5 Subplots 121
3.1.6 Controlling the Spacing between Points on a Plot 122
3.1.7 Enhanced Control of Plotted Lines 126
3.1.8 Enhanced Control of  Text Strings 127

3.2	 Polar Plots 130
3.3	 Annotating and Saving Plots 132
3.4	 Additional Types of Two-Dimensional Plots 135
3.5	 Using the plot Function with Two-Dimensional Arrays 140
3.6 	Plots with Two y Axes 142
3.7	 Summary 149

3.7.1 Summary of Good Programming Practice 150
3.7.2 MATLAB Summary 151

3.8	 Exercises 151

Chapter 4	 Branching Statements and Program Design	 157

4.1	 Introduction to Top-Down Design Techniques 157
4.2	 Use of Pseudocode 161
4.3	 The logical Data Type 162

4.3.1 Relational and Logic Operators 162
4.3.2 Relational Operators 163
4.3.3 A Caution About the == and ~= Operators 164
4.3.4 Logic Operators 165
4.3.5 Logical Functions 169

4.4	 Branches 171
4.4.1 The if Construct 171
4.4.2 Examples Using if Constructs 173
4.4.3 Notes Concerning the Use of if Constructs 179
4.4.4 The switch Construct 182
4.4.5 The try/catch Construct 183

4.5	 More on Debugging MATLAB Programs 189
4.6	 Code Sections 196
4.7	 MATLAB Applications: Roots of Polynomials 198
4.8	 Summary 201

4.8.1 Summary of Good Programming Practice 201
4.8.2 MATLAB Summary 202

4.9	 Exercises 203

xx | Contents

Chapter 5	 Loops and Vectorization	 207

5.1	 The while Loop 207
5.2	 The for Loop 213

5.2.1 Details of Operation 220
5.2.2 Vectorization:  A Faster Alternative to Loops 222
5.2.3 The MATLAB Just-In-Time (JIT) Compiler 223
5.2.4 The break and continue Statements 227
5.2.5 Nesting Loops 228

5.3	 Logical Arrays and Vectorization 229
5.3.1 �Creating the Equivalent of if/else Constructs

with Logical Arrays 230
5.4	 The MATLAB Profiler 232
5.5	 Additional Examples 235
5.6	 The textread Function 250
5.7	 MATLAB Applications: Statistical Functions 252
5.8	 MATLAB Applications: Curve Fitting and Interpolation 255

5.8.1 General Least-Squares Fits 255
5.8.2 Cubic Spline Interpolation 262
5.8.3 Interactive Curve-Fitting Tools 267

5.9	 Summary 271
5.9.1 Summary of Good Programming Practice 271
5.9.2 MATLAB Summary 272

5.10	Exercises 272

Chapter 6	 Basic User-Defined Functions	 283

6.1	 Introduction to MATLAB Functions 284
6.2	 Variable Passing in MATLAB: The Pass-by-Value Scheme 290
6.3	 Optional Arguments 300
6.4	 Sharing Data Using Global Memory 305
6.5	 Preserving Data between Calls to a Function 313
6.6	 Built-In MATLAB Functions: Sorting Functions 318
6.7	 Built-In MATLAB Functions: Random Number Functions 320
6.8	 Summary 320

6.8.1 Summary of Good Programming Practice 321
6.8.2 MATLAB Summary 321

6.9	 Exercises 322

Chapter 7	 Advanced Features of User-Defined Functions	 331

7.1	 Function Functions 331
7.2	 Function Handles 336

Contents | xxi

7.3	 Functions eval and feval 341
7.4	� Local Functions, Private Functions, and Nested Functions 342

7.4.1 Local Functions 342
7.4.2 Private Functions 344
7.4.3 Nested Functions 345
7.4.4 Order of Function Evaluation 348
7.4.5 Function Handles and Nested Functions 348
7.4.6 The Significance of Function Handles 350

7.5	� An Example Application: Solving Ordinary
Differential Equations 351

7.6	 Anonymous Functions 358
7.7	 Recursive Functions 359
7.8	 Plotting Functions 360
7.9	 Histograms 362
7.10	An Example Application: Numerical Integration 368
7.11	Summary 374

7.11.1 Summary of Good Programming Practice 374
7.11.2 MATLAB Summary 375

7.12	Exercises 375

Chapter 8	 Complex Numbers and Additional Plots	 385

8.1	 Complex Data 385
8.1.1 Complex Variables 387
8.1.2 Using Complex Numbers with Relational Operators 387
8.1.3 Complex Functions 388
8.1.4 Plotting Complex Data 394

8.2	 Multidimensional Arrays 397
8.3	 Gallery of MATLAB Plots 399
8.4	 Line Plots 410

8.4.1 The plot3 Function 410
8.4.2 Changing the Viewpoint of Three-dimensional Plots 414
8.4.3 The fplot3 Function 414
8.4.4 The fimplicit Function 415

8.5	 Discrete Data Plots 417
8.5.1 The stem3 Function 419
8.5.2 The scatter Function 420
8.5.3 The scatter3 Function 424

8.6	 Polar Plots 426
8.6.1 The compass Function 429
8.6.2 The ezpolar Function 429

8.7	 Contour Plots 431
8.7.1 Function contour 431
8.7.2 Function contourf 433

xxii | Contents

8.7.3 Function contour3 435
8.7.4 Function fcontour 435

8.8	 Surface and Mesh Plots 436
8.8.1 Creating Surface and Mesh Plots 437
8.8.2 �Creating Three-Dimensional Objects using Surface

and Mesh Plots 442
8.8.3 Ribbon Plots 444
8.8.4 Function pcolor 445
8.8.5 Functions fsurf and fmesh 447
8.8.6 Function fimplicit3 448

8.9	 Pie Charts, Bar Plots, and Histograms 450
8.9.1 The area Function 451
8.9.2 Bar Plots 452
8.9.3 Two-Dimensional Histograms 456

8.10	Color Order, Color Maps, and Color Bars 457
8.10.1 Plot Color Order 457
8.10.2 Color Maps 459
8.10.3 Color Bars 459

8.11	Summary 463
8.11.1 Summary of Good Programming Practice 463
8.11.2 MATLAB Summary 463

8.12	Exercises 464

Chapter 9	 Additional Data Types	 471

9.1	 Character Arrays versus Strings 472
9.1.1 Character Arrays 472
9.1.2 Strings 473

9.2	 Character Arrays and Character Functions 473
9.2.1 Character Array Conversion Functions 474
9.2.2 Creating Two-Dimensional Character Arrays 475
9.2.3 Concatenating Character Arrays 476
9.2.4 Comparing Character Arrays 476
9.2.5 Searching/Replacing Characters within a Character Array 480
9.2.6 Uppercase and Lowercase Conversion 481
9.2.7 Trimming Whitespace from Strings 482
9.2.8 Numerical-to-Character Array Conversions 482
9.2.9 String-to-Numerical Conversions 484

9.3	 The string Data Type 490
9.3.1 Creating Strings 491
9.3.2 Converting Data into Strings 491
9.3.3 Converting Strings to Other Data Types 493
9.3.4 Concatenating Strings 494
9.3.5 Comparing Strings 494
9.3.6 Searching for Substrings within a String 495

Contents | xxiii

9.3.7 Extracting Substrings from a String 496
9.3.8 Inserting Strings into a String 497
9.3.9 Replacing Characters within a String 497
9.3.10 Erasing Characters in a String 498
9.3.11 Uppercase and Lowercase Conversion 499
9.3.12 Trimming Whitespace from Strings 499

9.4	 Summary of Character Array and String Functions 499
9.5	 The single Data Type 503
9.6	 Integer Data Types 504
9.7	 Limitations of the single and Integer Data Types 505
9.8	 The datetime and duration Data Types 507

9.8.1 The datetime Data Type 507
9.8.2 The duration Data Type 508
9.8.3 calendarDuration Arrays 508
9.8.4 Time Calculations 509
9.8.5 Using Time Data in MATLAB 511

9.9 	Summary 513
9.9.1 Summary of Good Programming Practice 513
9.9.2 MATLAB Summary 513

9.10	Exercises 514

Chapter 10	� Sparse Arrays, Cell Arrays, Structures,
and Tables	 517

10.1	 Sparse Arrays 517
 10.1.1 The sparse Attribute 519

10.2	 Cell Arrays 525
 10.2.1 Creating Cell Arrays 527
 10.2.2 Using Braces {} as Cell Constructors 528
 10.2.3 Viewing the Contents of Cell Arrays 528
 10.2.4 Extending Cell Arrays 529
 10.2.5 Deleting Cells in Arrays 531
 10.2.6 Using Data in Cell Arrays 532
 10.2.7 Cell Arrays of Strings 532
 10.2.8 The Significance of Cell Arrays 534
 10.2.9 Summary of cell Functions 538

10.3	 Structure Arrays 539
 10.3.1 Creating Structure Arrays 539
 10.3.2 Adding Fields to Structures 542
 10.3.3 Removing Fields from Structures 542
 10.3.4 Using Data in Structure Arrays 543
 10.3.5 The getfield and setfield Functions 544
 10.3.6 Dynamic Field Names 545
 10.3.7 Using the size Function with Structure Arrays 546

xxiv | Contents

 10.3.8 Nesting Structure Arrays 547
 10.3.9 Summary of structure Functions 548

10.4	 Table Arrays 548
 10.4.1 Creating Table Arrays 548
 10.4.2 Accessing Data in a Table 551
 10.4.3 Table Metadata (Properties) 552
 10.4.4 Examining the Contents and Properties of a Table 553
 10.4.5 Table Summary 554

10.5	 Summary 560
 10.5.1 Summary of Good Programming Practice 560
 10.5.2 MATLAB Summary 561

10.6	 Exercises 561

Chapter 11	 Input-Output Functions	 565

11.1	 The textread Function 565
11.2	 More about the load and save Commands 567
11.3	 An Introduction to MATLAB File Processing 570
11.4	 File Opening and Closing 571

 11.4.1 The fopen Function 571
 11.4.2 The fclose Function 574

11.5	 Binary I/O Functions 575
 11.5.1 The fwrite Function 575
 11.5.2 The fread Function 575

11.6	 Formatted I/O Functions 580
 11.6.1 The fprintf Function 580
 11.6.2 Understanding Format Conversion Specifiers 581
 11.6.3 How Format Strings Are Used 583
 11.6.4 The sprintf Function 585
 11.6.5 The fscanf Function 587
 11.6.6 The fgetl Function 588
 11.6.7 The fgets Function 589

11.7	 Comparing Formatted and Binary I/O Functions 589
11.8	 File Positioning and Status Functions 594

 11.8.1 The exist Function 595
 11.8.2 The ferror Function 597
 11.8.3 The feof Function 598
 11.8.4 The ftell Function 598
 11.8.5 The frewind Function 598
 11.8.6 The fseek Function 598

11.9	 The textscan Function 604
11.10 Function uiimport 606
11.11 Summary 609

 11.11.1 Summary of Good Programming Practice 610
 11.11.2 MATLAB Summary 610

11.12 Exercises 611

Contents | xxv

Chapter 12	� User-Defined Classes and
Object-Oriented Programming	 615

12.1	 An Introduction to Object-Oriented Programming 615
 12.1.1 Objects 616
 12.1.2 Messages 617
 12.1.3 Classes 617
 12.1.4 Static Methods 618
 12.1.5 Class Hierarchy and Inheritance 620
 12.1.6 Object-Oriented Programming 620

12.2	 The Structure of a MATLAB Class 621
 12.2.1 Creating a Class 622
 12.2.2 Adding Methods to a Class 624
 12.2.3 Listing Class Types, Properties, and Methods 628
 12.2.4 Attributes 629

12.3	 Value Classes versus Handle Classes 633
 12.3.1 Value Classes 634
 12.3.2 Handle Classes 635

12.4	 Destructors:  The delete Method 638
12.5	 Access Methods and Access Controls 640

 12.5.1 Access Methods 640
 12.5.2 Access Controls 642
 12.5.3 Example: Creating a Timer Class 642
 12.5.4 Notes on the MyTimer Class 647

12.6	  Static Methods 648
12.7	  Defining Class Methods in Separate Files 649
12.8	  Overriding Operators 650
12.9	  Events and Listeners 655

 12.9.1 Property Events and Listeners 658
12.10 Exceptions 659

 12.10.1 Creating Exceptions in Your Own Programs 660
 12.10.2 Catching and Fixing Exceptions 661

12.11  Superclasses and Subclasses 662
 12.11.1 Defining Superclasses and Subclasses 663
 12.11.2 Example Using Superclasses and Subclasses 668

12.12 Summary 678
 12.12.1 Summary of Good Programming Practice 679
 12.12.2 MATLAB Summary 679

12.13 Exercises 680

Chapter 13	Handle Graphics and Animation	 685

13.1	 Handle Graphics 685
13.2	 The MATLAB Graphics System 686
13.3	 Object Handles 688

xxvi | Contents

13.4 Examining and Changing Object Properties 689
13.4.1 Changing Object Properties at Creation Time 689
13.4.2 Changing Object Properties after Creation Time 689
13.4.3 �Examining and Changing Properties

Using Object Notation 690
13.4.4 �Examining and Changing Properties Using

get/set Functions 692
13.4.5 �Examining and Changing Properties Using

the Property Editor 694
13.5 Using set to List Possible Property Values 698
13.6 User-Defined Data 700
13.7 Finding Objects 701
13.8 Selecting Objects with the Mouse 703
13.9 Position and Units 706

13.9.1 Positions of figure Objects 706
13.9.2 Positions of axes and polaraxes Objects 707
13.9.3 Positions of text Objects 707

13.10 Printer Positions 710
13.11 Default and Factory Properties 711
13.12 Restoring Default Properties 713
13.13 Graphics Object Properties 713
13.14 Animations and Movies 714

13.14.1 Erasing and Redrawing 714
13.14.2 Creating a Movie 719

13.15 Summary 721
13.15.1 Summary of Good Programming Practice 721
13.15.2 MATLAB Summary 721

13.16  Exercises 722

Chapter 14	MATLAB Apps and Graphical User Interfaces	 725

14.1 How a Graphical User Interface Works 726
14.2 Creating and Displaying a Graphical User Interface 732

 14.2.1 The Structure of a Callback Function (Method) 738
 14.2.2 Adding Application Data to a Figure 739

14.3 Object Properties 739
 14.3.1 Key Properties of Numerical Components 741
 14.3.2 Key Properties of Text Components 743

14.4	 �Additional Containers: Panels, Tab Groups,
and Button Groups 749

 14.4.1 Panels 749
 14.4.2 Tab Groups 752
 14.4.3 Button Groups 752

14.5 Dialog Boxes 754
 14.5.1 Alert Dialog Boxes 755

Contents | xxvii

 14.5.2 Confirmation Dialog Boxes 755
 14.5.3 Input Dialog Boxes 757
 14.5.4 �The uigetfile, uisetfile, and uigetdir Dialog

Boxes 757
 14.5.5 The uisetcolor and uisetfont Dialog Boxes 759

14.6 Menus 760
 14.6.1 Creating Your Own Menus 763
 14.6.2 Accelerator Keys and Keyboard Mnemonics 763

14.7	 Summary 774
 14.7.1 Summary of Good Programming Practice 775
 14.7.2 MATLAB Summary 775

14.8	 Exercises 777

A UTF-8 Character Set 779

B Answers to Quizzes 781

Index 807

Chapter 15	 Guide-Based Graphical User Interfaces (On-line Only)

15.1	 How a Graphical User Interface Works
15.2	 Creating and Displaying a Graphical User Interface

 15.2.1 A Look Under the Hood
 15.2.2 The Structure of a Callback Subfunction
 15.2.3 Adding Application Data to a Figure
 15.2.4 A Few Useful Functions

15.3	 Object Properties
15.4	 Graphical User Interface Components

 15.4.1 Static Text Fields
 15.4.2 Edit Boxes
 15.4.3 Pushbuttons
 15.4.4 Toggle Buttons
 15.4.5 Checkboxes and Radio Buttons
 15.4.6 Popup Menus
 15.4.7 List Boxes
 15.4.8 Sliders
 15.4.9 Tables

15.5	 Additional Containers: Panels and Button Groups
 15.5.1 Panels
 15.5.2 Button Groups

15.6	 Dialog Boxes
 15.6.1 Error and Warning Dialog Boxes
 15.6.2 Input Dialog Boxes

xxviii | Contents

 15.6.3 The uigetfile, uisetfile, and uigetdir Dialog Boxes
 15.6.4 The uisetcolor and uisetfont Dialog Boxes

15.7	 Menus
 15.7.1 Suppressing the Default Menu
 15.7.2 Creating Your Own Menus
 15.7.3 Accelerator Keys and Keyboard Mnemonics
 15.7.4 Creating Context Menus

15.8	 Tips for Creating Efficient GUIs
 15.8.1 Tool Tips
 15.8.2 Toolbars
 15.8.3 Additional Enhancements

15.9	 Summary
 15.9.1 Summary of Good Programming Practice
 15.9.2 MATLAB Summary

15.10 Exercises

1

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a pro-
gram designed to perform matrix mathematics, but over the years it has grown into
a flexible computing system capable of solving essentially any technical problem.

The MATLAB program implements the MATLAB programming language and
provides a very extensive library of predefined functions to make technical pro-
gramming tasks easier and more efficient. This book introduces the MATLAB lan-
guage as it is implemented in MATLAB Version 2018A and shows how to use it to
solve typical technical problems.

MATLAB is a huge program with an incredibly rich variety of functions. Even the
basic version of MATLAB without any toolkits is much richer than other technical
programming languages. There are more than 1000 functions in the basic MATLAB
product alone, and the toolkits extend this capability with many more functions in
various specialties. Furthermore, these functions often solve very complex problems
(solving differential equations, inverting matrices, and so forth) in a single step, saving
large amounts of time. Doing the same thing in another computer language usually
involves writing complex programs yourself or buying a third-party software pack-
age (such as IMSL, the Intel® Math Kernel Library, or the NAG software libraries)
that contains the functions.

The built-in MATLAB functions are almost always better than anything that
an individual engineer could write on his or her own because many people have
worked on them, and they have been tested against many different data sets. These
functions are also robust, producing sensible results for wide ranges of input data
and gracefully handling error conditions.

This book makes no attempt to introduce users to all of MATLAB’s functions.
Instead, it teaches users the basics of how to write, debug, and optimize good MATLAB
programs, and it introduces a subset of the most important functions used to
solve common scientific and engineering problems. Just as importantly, it teaches

1Chapter

Introduction to MATLAB

2 | Chapter 1  Introduction to MATLAB

the scientist or engineer how to use MATLAB’s own tools to locate the right
function for a specific purpose from the enormous variety of choices available.
In addition, it teaches how to use MATLAB to solve many practical engineering
problems, such as vector and matrix algebra, curve fitting, differential equations,
and data plotting.

The MATLAB program is a combination of a procedural programming language, an
integrated development environment (IDE) that includes an editor and debugger, and
an extremely rich set of functions that perform many types of technical calculations.

The MATLAB language is a procedural programming language, meaning that the
engineer writes procedures, which are effectively mathematical recipes for solving a
problem. This makes MATLAB very similar to other procedural languages such as
C or Fortran. However, the extremely rich list of predefined functions and plot-
ting tools makes it superior to these other languages for many engineering analysis
applications.

In addition, the MATLAB language includes object-oriented extensions that
allow engineers to write object-oriented programs. These extensions are similar to
other object-oriented languages such as C++ or Java.

1.1  The Advantages of MATLAB

MATLAB has many advantages compared to conventional computer languages for
technical problem solving. Among them are the following:

1.  Ease of Use
MATLAB is an interpreted language, like many versions of Basic. Like
Basic, it is very easy to use. The program can be used as a scratch pad to
evaluate expressions typed at the command line, or it can be used to exe-
cute large prewritten programs. Programs may be easily written and modified
with the built-in integrated development environment and debugged with the
MATLAB debugger. Because the language is so easy to use, it is ideal for the
rapid prototyping of new programs.

Many program development tools are provided to make the program
easy to use. They include an integrated editor/debugger, on-line documenta-
tion and manuals, a workspace browser, and extensive demos.

2.  Platform Independence
MATLAB is supported on many different computer systems and thus enables
a large measure of platform independence. At the time of this writing, the
language is supported on Windows 7/8.1/10, Linux, and the Apple Mac oper-
ating system. Programs written on any platform will run on all of the other
platforms, and data files written on any platform may be read transparently
on any other platform. As a result, programs written in MATLAB can migrate
to new platforms when the needs of the user change.

3.  Predefined Functions
MATLAB comes complete with an extensive library of predefined functions
that provide tested and prepackaged solutions to many basic technical tasks.
For example, suppose that you are writing a program that must calculate the

1.2  Disadvantages of MATLAB | 3

statistics associated with an input data set. In most languages, you would
need to write your own subroutines or functions to implement calculations
such as the arithmetic mean, standard deviation, median, and so forth. These
and hundreds of other functions are built right into the MATLAB language,
making your job much easier.

In addition to the large library of functions built into the basic MATLAB
language, there are many special-purpose toolboxes available to help solve
complex problems in specific areas. For example, you can buy standard tool-
boxes to solve problems in signal processing, control systems, communica-
tions, image processing, and neural networks, among many others. There is
also an extensive collection of free user-contributed MATLAB programs that
are shared through the MATLAB website.

4.  Device-Independent Plotting
Unlike most other computer languages, MATLAB has many integral plot-
ting and imaging commands. The plots and images can be displayed on any
graphical output device supported by the computer on which MATLAB is
running. This capability makes MATLAB an outstanding tool for visualizing
technical data.

5.  Graphical User Interface
MATLAB includes tools that allow an engineer to interactively construct a
graphical user interface (GUI) for his or her program, and also to produce
Web apps. With this capability, an engineer can design sophisticated data
analysis programs that can be operated by relatively inexperienced users.

6.  MATLAB Compilers
MATLAB’s flexibility and platform independence is achieved by compiling
MATLAB programs into a device-independent p-code, and then interpreting
the p-code instructions at run-time. This approach is similar to that used by
Microsoft’s Visual Basic language or by Java. Unfortunately, the resulting
programs sometimes executed slowly because the MATLAB code is inter-
preted rather than compiled. Newer versions of MATLAB have partially
overcome this problem by introducing just-in-time (JIT) compiler technol-
ogy. The JIT compiler compiles portions of the MATLAB code as it is exe-
cuted to increase overall speed.

A separate MATLAB Coder is also available. The MATLAB Coder gen-
erates portable and readable C and C++ code from MATLAB code. This
converted code can then be compiled and included in programs written in
other languages. In addition, legacy code written in other languages can be
compiled and used within MATLAB.

1.2  Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted lan-
guage and therefore can execute more slowly than compiled languages. This problem
can be mitigated by properly structuring the MATLAB program to maximize the
performance of vectorized code and by using the JIT compiler.

4 | Chapter 1  Introduction to MATLAB

The second disadvantage is cost: a full copy of MATLAB is 5 to 10 times more
expensive than a conventional C or Fortran compiler. This relatively high cost is
more than offset by the reduced time required for an engineer or scientist to create
a working program, so MATLAB is cost-effective for businesses. However, it is too
expensive for most individuals to consider purchasing. Fortunately, there is also an
inexpensive student edition of MATLAB, which is a great tool for students wishing
to learn the language. The student edition of MATLAB is essentially identical to the
full edition.

1.3  The MATLAB Environment

The fundamental unit of data in any MATLAB program is the array. An array
is a collection of data values organized into rows and columns and known
by a single name. Individual data values within an array can be accessed
by including the name of the array followed by subscripts in parentheses
that identify the row and column of the particular value. Even scalars are
treated as arrays by MATLAB—they are simply arrays with only one row and
one column. We will learn how to create and manipulate MATLAB arrays in
Section 1.4.

When MATLAB executes, it can display several types of windows that accept
commands or display information. The three most important types of windows are
Command Windows, where commands may be entered; Figure Windows, which dis-
play plots and graphs; and Edit Windows, which permit a user to create and modify
MATLAB programs. We will see examples of all three types of windows in this
section.

In addition, MATLAB can display other windows that provide help and that
allow the user to examine the values of variables defined in memory. We will exam-
ine some of these additional windows here, and examine the others when we discuss
how to debug MATLAB programs.

1.3.1  The MATLAB Desktop

When you start MATLAB Version 2018A, a special window called the MATLAB
desktop appears. The desktop is a window that contains other windows showing
MATLAB data, plus toolbars and a “Toolstrip” or “Ribbon Bar” similar to that used
by Windows 10 or Microsoft Office. By default, most MATLAB tools are “docked”
to the desktop, so that they appear inside the desktop window. However, the user can
choose to “undock” any or all tools, making them appear in windows separate from
the desktop.

The default configuration of the MATLAB desktop is shown in Figure 1.1.
It integrates many tools for managing files, variables, and applications within the
MATLAB environment.

1.3  The MATLAB Environment | 5

The major tools within or accessible from the MATLAB desktop are:

■■ The Command Window
■■ The Toolstrip
■■ The Documents Window, including the Editor/Debugger and Array Editor
■■ Figure Windows
■■ The Workspace Browser
■■ The Current Folder Browser, with the Details Window
■■ The Help Browser
■■ The Path Browser
■■ A Popup Command History Window

Details Window
displays the

properties of a file
selected in the

Current Folder Browser

Workspace Browser
shows variables defined

in workspace

MATLAB Command
Window

MATLAB
Editor

Launch the
Help Browser

This control allow
a user to view
or change the

current directory

Current Folder
Browser

shows a list
of the files in the
current directory

Figure 1.1  The default MATLAB desktop. The exact appearance of the
desktop may differ slightly on different types of computers.

6 | Chapter 1  Introduction to MATLAB

The functions of these tools are summarized in Table 1.1. We will discuss them in
later sections of this chapter.

1.3.2  The Command Window

The bottom center of the default MATLAB desktop contains the Command
Window. A user can enter interactive commands at the command prompt (») in the
Command Window, and they will be executed on the spot.

As an example of a simple interactive calculation, suppose that you wanted to cal-
culate the area of a circle with a radius of 2.5 m. The equation for this area of a circle is

	 A 5 �r
2	 (1.1)

where r is the radius of the circle and A is the area of the circle. This equation can be
evaluated in the MATLAB Command Window by typing:

» area = pi * 2.5^2
area =
 19.6350

where * is the multiplication symbol and ^ is the exponential symbol. MATLAB
calculates the answer as soon as the Enter key is pressed, and stores the answer
in a variable (really a 1 3 1 array) called area. The contents of the variable are

Table 1.1: Tools and Windows Included in the MATLAB
Desktop

Tool Description

Command Window A window where the user can type commands and see immediate
results, or where the user can execute scripts or functions

Toolstrip A strip across the top of the desktop containing icons to select func-
tions and tools, arranged in tabs and sections of related functions

Command History
Window

A window that displays recently used commands, accessed by click-
ing the up arrow when typing in the Command Window

Document Window A window that displays MATLAB files and allows the user to edit or
debug them

Figure Window A window that displays a MATLAB plot

Workspace Browser A window that displays the names and values of variables stored in
the MATLAB workspace

Current Folder
Browser

A window that displays the names of files in the current directory. If
a file is selected in the Current Folder Browser, details about the file
will appear in the Details Window

Help Browser A tool to get help for MATLAB functions, accessed by clicking the
“Help” button on the Toolstrip

Path Browser A tool to display the MATLAB search path, accessed by clicking the
“Set Path” button on the Home tab of the Toolstrip

1.3  The MATLAB Environment | 7

User input

Result of
calculation

Result is added
to the workspace

Figure 1.2  The Command Window appears in the center of the desktop.
You enter commands and see responses here.

displayed in the Command Window as shown in Figure 1.2, and the variable can be
used in further calculations. (Note that p is predefined in MATLAB, so we can just
use pi without first declaring it to be 3.141592 …).

If a statement is too long to type on a single line, it may be continued on succes-
sive lines by typing an ellipsis (...) at the end of the first line and then continuing
on the next line. For example, the following two statements are identical.

x1 = 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6

and

x1 = 1 + 1/2 + 1/3 + 1/4 ...
 + 1/5 + 1/6

Instead of typing commands directly in the Command Window, a series of com-
mands can be placed into a file, and the entire file can be executed by typing its
name in the Command Window. Such files are called script files. Script files (and
functions, which we will see later) are also known as M-files because they have a file
extension of “.m”.

1.3.3  The Toolstrip

The Toolstrip (see Figure 1.3) is a bar of tools that appears across the top of the
desktop. The controls on the Toolstrip are organized into related categories of func-
tions, first by tabs, and then by groups. For example, the tabs visible in Figure 1.3 are

8 | Chapter 1  Introduction to MATLAB

“Home”, “Plots”, “Apps”, “Editor”, and so forth. When one of the tabs is selected,
a series of controls grouped into sections is displayed. In the Home tab, the sections
are “File”, “Variable”, “Code”, and so forth. With practice, the logical grouping of
commands helps the user to quickly locate any desired function.

In addition, the upper-right corner of the Toolstrip contains the Quick Access
Toolbar, which is where you can customize the interface and display the most com-
monly used commands and functions at all times. To customize the functions dis-
played there, right-click on the toolbar and select the Customize option from the
popup menu.

1.3.4  The Command History Window

The Command History Window displays a list of the commands that a user has
previously entered in the Command Window. The list of commands can extend
back to previous executions of the program. Commands remain in the list until
they are deleted. To display the Command History Window, press the up arrow
key while typing in the Command Window. To reexecute any command, simply
double-click it with the left mouse button. To delete one or more commands from
the Command History Window, select the commands and right-click them with the
mouse. A popup menu will be displayed that allows the user to delete the items (see
Figure 1.4).

1.3.5  The Document Window

A Document Window (also called an Edit/Debug Window) is used to create new
M-files or to modify existing ones. An Edit/Debug Window is created automati-
cally when you create a new M-file or open an existing one. You can create a new

Figure 1.3  The Toolstrip, which allows you to select from a wide variety
of MATLAB tools and commands.

1.3  The MATLAB Environment | 9

M-file with the “New Script” command from the “File” group on the Toolstrip
(Figure 1.5a), or by clicking the New icon and selecting Script from the popup
menu (Figure 1.5b). You can open an existing M-file file with the Open command
from the “File” section on the Toolstrip.

An Edit/Debug Window displaying a simple M-file called calc_area.m
is shown in Figure 1.5. This file calculates the area of a circle given its radius
and displays the result. By default, the Edit Window is docked to the desktop, as
shown in Figure 1.5c. The Edit Window can also be undocked from the MATLAB
desktop. In that case, it appears within a container called the Documents Window,
as shown in Figure 1.5d. We will learn how to dock and undock a window later in
this chapter.

The Edit Window is essentially a programming text editor, with the MATLAB
language’s features highlighted in different colors. Comments in an M-file file appear
in green, variables and numbers appear in black, complete character strings appear in
magenta, incomplete character strings appear in red, and language keywords appear
in blue.

After an M-file is saved, it may be executed by typing its name in the Command
Window. For the M-file in Figure 1.5, the results are:

» calc_area
The area of the circle is 19.635

The Edit Window also doubles as a debugger, as we shall see in Chapter 2.

Figure 1.4  The Command History Window, showing three commands
being deleted.

